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On Weird and Pseudoperfect Numbers 

By S. J. Benkoski and P. Erdos 

Abstract. If n is a positive integer and a(n) denotes the sum of the divisors of n, then n is 
perfect if a(n) = 2n, abundant if 0(n) _ 2n and deficient if a(n) < 2n. n is called pseudoperfect 
if n is the sum of distinct proper divisors of n. If n is abundant but not pseudoperfect, then n 
is called weird. The smallest weird number is 70. 

We prove that the density of weird numbers is positive and discuss several related prob- 
lems and results. A list of all weird numbers not exceeding 106 is given. 

Let n be a positive integer. Denote by a(n) the sum of divisors of n. We call n 
perfect if a(n) = 2n, abundant if a(n) > 2n and deficient if a(n) < 2n. We further 
define n to be pseudoperfect if n is the distinct sum of some of the proper divisors of n, 
e.g., 20 = 1 + 4 + 5 + 10 is pseudoperfect [6]. An integer is called primitive abundant 
if it is abundant but all its proper divisors are deficient. It is primitive pseudoperfect 
if it is pseudoperfect but none of its proper divisors are pseudoperfect. 

An integer n is called weird if n is abundant but not pseudoperfect. The smallest 
weird number is 70 and Table 1 is a list of all weird numbers not exceeding 106. The 
study of weird numbers leads to surprising and unexpected difficulties. In particular, 
we could not decide whether there are any odd weird numbers [1] nor whether o-(n)/n 
could be arbitrarily large for weird n. We give an outline of the proof that the density 
of weird numbers is positive and discuss several related problems. Some of the proofs 
are only sketched, especially, if they are similar to proofs which are already in the 
literature. 

First, we consider the question of whether there are weird numbers n for which 
0(n)/n can take on arbitrarily large values. Tentatively, we would like to suggest that 
the answer is negative. We can decide a few related questions. Let n be an integer 
with 1 = di < ... < dk = n the divisors of n. We say that n has property P if all 
the 2k sums k=l ,idi, i = 0 or 1, are distinct. P. Erdbs proved that the density 
of integers having property P exists and is positive [2]. Clearly, 2' has property P 
for every m. It is plausible to conjecture that if n has property P, then o(n)/n < 2. 
The result is indeed true and follows from the next theorem. We conjectured this 
and the simple and ingenious proof is due to C. Ryavec. 

THEOREM 1. Let 1 < a, < ... < an be a set of integers for which all the sums 
leai, i = 0 or 1, are distinct. Then 

n 
<2. 

Proof. We have, for 0 < x < 1, 
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TABLE 1 

Weird Numbers ? 106 

Primitive Nonprimitive 

70 70-p with p > a (70) and p a prime 
836 7192* 31 
4030 836 421 
5830 836-487 
7192 836-491 
7912 836-p with p > 557 and p a prime 
9272 
10,792 
17,272 
45,356 
73,616 
83,312 
91,388 
113,072 
243,892 
254,012 
338,572 
343,876 
388,076 
519,712 
539,774 
555,616 
682,592 
786,208 

n ? 1 

ft (1 + X ) < E X 1 
i31 k-O X 

Thus 

n 

j log(l + xi) < - log(l - x) or 
i =1 

(1 log(l + X`) log(l - x) 
(1) +~ ~~~ ~~ dx<1x(_ x 

i=l JO X o X 

Now, putting xai = y, we obtain, from (1), 

n 1 Clog(1 + Y) flog(1 - X) E I ) dy < dA 
i=l Jo Y JO x 

i.e., 
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n T 2\ 2 

j1 ai 1 2 6 

Thus E =1 l/ai < 2 and the theorem is proved. 
The same argument can be used to show that if the sums n -jai are all distinct, 

then 

1 1 

and equality holds only if ai = 2i-1, i = 1, 2, * * , n. 
Here, we call attention to an old conjecture of P. Erdds. If the sums E =1 ejai, 

fi=0 or 1, are all distinct, then, is it true that an> 2n- I for an absolute constant C? 
P. Erdos offered and still offers 300 dollars for a proof or disproof of this conjecture. 

Consider next the property P'. An integer n is said to have property P' if no 
divisor of n is the distinct sum of other divisors of n. Here again, we can prove that 
there is an absolute constant C so that T(n)/n > C implies that n cannot have property 
P'. This is immediate from the following old result of P. Erdos [3]. 

THEOREM 2. Let a, < a2 < ... be a finite or infinite sequence of integers no 
term of which is the distinct sum of other terms; then Hi 1/ai < C where C is an 
absolute constant. 

Proof. In view of the fact that the proof appeared in Hungarian, we give the 
outline of the proof here. 

Put A(x) = SajSX 1. We split the positive integers into two classes. In the first 
class are the integers n for which 

(2) A(2n+ 1) - A(2 n) < 2 /n2. 

Clearly, from (2), 

( E ~~~~~~~~as n~i n 

where E' is over all j such that 2n < a; _ 2f n1 for some n in the first class. 
Let n, < n2 < ... be the integers belonging to the second class, i.e., 

(4) I 1 _ n/ 2 In 
2ni<ai --2nj+J1 

Observe that the integers 

(5) a, + a2 + + ar + ak with I < r < k 

are all distinct since if a, + + ar, + ak, = a, + * + ar, + ak2, r2 > ri, then 
ak, would be a distinct sum of other ai's. 

Now, put n1i/2] = t. Clearly, 

(6) n* > t + [U/2]. 

By (4), 

(7) A(2t+1) - A(2t) > 2t/t2 > 5t2 >. j2 for i > 100. 

Let 1 ? a, < ... < a, i be the first j2 of the ai's. By (7), a, _ 2t+1. Consider now 
the integers (5) for 1 < r _ j2, ar < ak < 2 ni+. By (7), ar < 2t+1. Thus, by (6), the 
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integers (5) are all less than 

(8) 2n+1 + 22t+1 < 2 for j > 100. 

Now, observe that there are at least 

(9) j2-((2ni+1) _ j2) 

integers of the form (5); they are all distinct and are all less than 2 ni+2 Thus, from 

(8), (6), and (7), 

22ni+2 2ni 
(10) A(2n'~') < <2 + 2 < 10 -. for ] > 100. .2 .2 

Now, (10) and (3) immediately imply the uniform boundedness of Il /a,. It is 
perhaps not quite easy to get the best possible value of C. It seems certain that C < 10. 

Unfortunately, we obtain no information about pseudoperfect numbers by these 
methods. 

It is known that the density of integers having property P exists and that the same 
holds for P' (see [2]). Denote by ul < u2 < *. i, respectively vl < v2 < *. v, the 
integers which do not have property P, respectively P', but all of whose proper divisors 
have property P, respectively P'. We expect that Ad 1/ui and Fj 1/vi both converge 
and, in fact, that 

E O- _-5 ~z- ((log x)) 

for every k but have not been able to find a proof. For primitive abundant numbers, 
the analogous results and much more is true [4]. 

Now, consider weird and pseudoperfect numbers. An integer is primitive pseudo- 
perfect if it is pseudoperfect but all its proper divisors are not pseudoperfect. It 
seems certain that the number of primitive pseudoperfect numbers not exceeding 
x is O(x/(log x)k) and, hence, the sum of their reciprocals converges. This we could 
not prove, but the fact that the density of the pseudoperfect numbers exists follows 
by the methods of [2]. It is easy to prove that there are infinitely many primitive 
abundant numbers which are pseudoperfect and, therefore, primitive pseudoperfect. 
The integers 2kp, with p a prime such that 2k < p < 2k+ 1, are easily seen to be primitive 
abundant and pseudoperfect. In fact, they are practical numbers of Grinivasan, i.e., 
every m ? T(2kp) is the distinct sum of divisors of 2kp. We leave the simple proof to 
the reader. 

It is slightly less trivial to prove that there are infinitely many primitive abundant 
numbers all of whose prime factors are large and which are pseudoperfect. We only 
outline the proof. 

For every k, let f(k) be the smallest index for which (p < P2 < * are the con- 
secutive prime numbers) 0T(Pk ... P1(k)) _ 2pk ... P* * (k 

THEOREM 3. There exists a positive integer k0 such that, for k > k0,o the integers 

Ak = 17 pi and Bk = (Ak/p(k)pf(k) +lpf(k) +2 
kgl <f(k) 

are both primitive pseudoperfect. 
Note that B1 = 70 which is not pseudoperfect. It appears that this is the only 
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value of k for which Theorem 3 fails, but to prove this might be difficult and would 
certainly require long computations for Bk and perhaps a new idea for Ak. 

We need two lemmas. 
LEMMA 1. There is an absolute constant c such that every integer m > cpk is 

the distinct sum of primes not less than Pk. 

The lemma is probably well known and, in any case, easily follows by Brun's 
method. 

LEMMA 2. There exists an integer k0 such that, for every k > koo 

(11) CPk < m < oa(Ak) - CPk 

implies that m is the distinct sum of divisors of Ak. The same result holds for Bk. 
Lemma 2 follows easily from Lemma 1 and from the fact that, for Pk _ X 

<2x < Ak, the interval (x, 2x) always contains a divisor of Ak and Bk. (To prove this 
last statement, we only need that, for e > 0, there exists an integer i4(E) such that 
p +1 < (1 + e)pi for i > io(e).) 

Lemma 2 implies Theorem 3 if we can show 

(12) T(Bk) - 2Bk > CAk and T(Ak) - 2Ak > CPkc 

Statement (12) follows immediately for Bk by a very simple computation if we 
observe that there is an integer lo such that, for 1 > lo, 

(1 + /1P+i)(i + I/Pm+2) > 1 + 3/2p. 

We do not have such a simple proof of (12) for Ak. Observe that 

(13) o(Ak) - 2 Ak _ (o-(Ak), Ak) 

where (a, b) denotes the greatest common divisor of a and b. 
Now, (13) implies (12) if we can show that (o(Ak), Ak) has, for k > ko, at least two 

prime factors. In fact, we shall prove that (X(n) denotes the number of prime factors 
of n) 

(14) lim w((oT(Ak), Ak)) = 

k-nco 

To prove (14), we first observe that, for e > 0, there is an integer ko(E) such that, 
for k > ko(E), 

(15) Pfk > 2k- 

This is of course well known and follows from the theorems of Mertens. The 
following theorem now implies (14). 

THEOREM 4. Denote by g(x) the number of indices 11 for which there is an 12 

satisfying 

x <p < Pt2 < x2, i =- -1 (mod pi,,) 

We then have lima. g(x) = a). 
Theorem 4 follows easily from the proof of Motohashi's theorem [5]. It does 

not follow from the theorem of Motohashi but it is easy to deduce by the same proof. 
Motohashi uses some deep results of Bombieri. Thus, (14) and Theorem 3 are proved. 

It seems likely that there are infinitely many primitive abundant numbers which 
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are weird but this we cannot prove. We can, however, show that the density of weird 
numbers is positive. 

It is clear that the weird numbers have a density since both the abundant numbers 
and the pseudoperfect numbers have a density. (A weird number is abundant- and 
not pseudoperfect.) Hence, we need only show that the density of weird numbers 
cannot be 0. This follows from the following simple lemma. 

LEMMA. If n is weird, then there is an en > 0 such that nt is weird if 

1i < + 'En 
dIt d 

Proof. First define (x)+ by 

(x) = x if x _ 0, 

= OD if x < 0. 
Put 

(16) An = min(1 - A' l/d)+ 

where, in A', d runs over all subsets of the divisors greater than 1 of n. If n is deficient 
or weird, then An > 0. 

If nt is not weird, then there is a set of divisors, greater than 1, of nt for which 

(17) 1 = Z1/d+ E l/d 
1 2 

where, in E, d I n and, in 2, d I nt but d 4 n. 
From (16) and (17), 

oT(t) oT(n) > 1 
t n - d n, 

which proves the lemma for En = n~n/u(n). 
THEOREM 5. The density of weird numbers is positive. 
Proof. If n is weird, then let En be as in the proof of the lemma. Now, by the 

lemma, if t is an integer and o-(t)/t < 1 + En, then nt is weird. But the density of the 
integers t with o-(t)/t < 1 + En is positive for any En > 0. 

Actually, we proved a slightly stronger result. If n is weird, then the density of 
{m; n I m and m is weird} is positive. 

It is easy to see that if n is weird and p is a prime greater than a(n), then pn is also 
weird. More generally, the following result holds. Let n be an integer which is not 
pseudoperfect, i.e., n is deficient or weird. The integer pn is pseudoperfect if and 
only if there is a set A of proper divisors of n and a set B of divisors of n where no 
b E B is a multiple of p, such that 

p(ndaa) = b. 
dGA bGB 

We leave the simple proof to the reader. 
Finally, we state without proof the following result: Let t > 0 be an integer. 

The density of integers n for which n + t is the distinct sum of proper divisors of n 
is positive. On the other hand, the density of the integers n, for which n - t (t > 0) 
is the sum of distinct divisors of n, is 0. 
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